最近在看數據手冊的時候,發(fā)現在Cortex-M3里,對于GPIO的配置種類有8種之多:
(1)GPIO_Mode_AIN 模擬輸入
(2)GPIO_Mode_IN_FLOATING 浮空輸入
(3)GPIO_Mode_IPD 下拉輸入
(4)GPIO_Mode_IPU 上拉輸入
(5)GPIO_Mode_Out_OD 開漏輸出
(6)GPIO_Mode_Out_PP 推挽輸出
(7)GPIO_Mode_AF_OD 復用開漏輸出
(8)GPIO_Mode_AF_PP 復用推挽輸出
對于剛入門的新手,我想這幾個概念是必須得搞清楚的,平時接觸的最多的也就是推挽輸出、開漏輸出、上拉輸入這三種,但一直未曾對這些做過歸納。因此,在這里做一個總結:
推挽輸出:可以輸出高,低電平,連接數字器件; 推挽結構一般是指兩個三極管分別受兩互補信號的控制,總是在一個三極管導通的時候另一個截止。高低電平由IC的電源低定。
推挽電路是兩個參數相同的三極管或MOSFET,以推挽方式存在于電路中,各負責正負半周的波形放大任務,電路工作時,兩只對稱的功率開關管每次只有一個導通,所以導通損耗小、效率高。輸出既可以向負載灌電流,也可以從負載抽取電流。推拉式輸出級既提高電路的負載能力,又提高開關速度。
詳細理解:
如圖所示,推挽放大器的輸出級有兩個“臂”(兩組放大元件),一個“臂”的電流增加時,另一個“臂”的電流則減小,二者的狀態(tài)輪流轉換。對負載而言,好像是一個“臂”在推,一個“臂”在拉,共同完成電流輸出任務。當輸出高電平時,也就是下級負載門輸入高電平時,輸出端的電流將是下級門從本級電源經VT3拉出。這樣一來,輸出高低電平時,VT3 一路和 VT5 一路將交替工作,從而減低了功耗,提高了每個管的承受能力。又由于不論走哪一路,管子導通電阻都很小,使RC常數很小,轉變速度很快。因此,推拉式輸出級既提高電路的負載能力,又提高開關速度。
開漏輸出:輸出端相當于三極管的集電極. 要得到高電平狀態(tài)需要上拉電阻才行. 適合于做電流型的驅動,其吸收電流的能力相對強(一般20ma以內).
開漏形式的電路有以下幾個特點:
1. 利用外部電路的驅動能力,減少IC內部的驅動。當IC內部MOSFET導通時,驅動電流是從外部的VCC流經R pull-up,MOSFET到GND。IC內部僅需很下的柵極驅動電流。
2. 一般來說,開漏是用來連接不同電平的器件,匹配電平用的,因為開漏引腳不連接外部的上拉電阻時,只能輸出低電平,如果需要同時具備輸出高電平的功能,則需要接上拉電阻,很好的一個優(yōu)點是通過改變上拉電源的電壓,便可以改變傳輸電平。比如加上上拉電阻就可以提供TTL/CMOS電平輸出等。(上拉電阻的阻值決定了邏輯電平轉換的沿的速度 。阻值越大,速度越低功耗越小,所以負載電阻的選擇要兼顧功耗和速度。)
3. OPEN-DRAIN提供了靈活的輸出方式,但是也有其弱點,就是帶來上升沿的延時。因為上升沿是通過外接上拉無源電阻對負載充電,所以當電阻選擇小時延時就小,但功耗大;反之延時大功耗小。所以如果對延時有要求,則建議用下降沿輸出。
4. 可以將多個開漏輸出的Pin,連接到一條線上。通過一只上拉電阻,在不增加任何器件的情況下,形成“與邏輯”關系。這也是I2C,SMBus等總線判斷總線占用狀態(tài)的原理。補充:什么是“線與”?:
在一個結點(線)上, 連接一個上拉電阻到電源 VCC 或 VDD 和 n 個 NPN 或 NMOS 晶體管的集電極 C 或漏極 D, 這些晶體管的發(fā)射極 E 或源極 S 都接到地線上, 只要有一個晶體管飽和, 這個結點(線)就被拉到地線電平上. 因為這些晶體管的基極注入電流(NPN)或柵極加上高電平(NMOS), 晶體管就會飽和, 所以這些基極或柵極對這個結點(線)的關系是或非 NOR 邏輯.如果這個結點后面加一個反相器, 就是或 OR 邏輯.
其實可以簡單的理解為:在所有引腳連在一起時,外接一上拉電阻,如果有一個引腳輸出為邏輯0,相當于接地,與之并聯的回路“相當于被一根導線短路”,所以外電路邏輯電平便為0,只有都為高電平時,與的結果才為邏輯1。
關于推挽輸出和開漏輸出,最后用一幅最簡單的圖形來概括:
該圖中左邊的便是推挽輸出模式,其中比較器輸出高電平時下面的PNP三極管截止,而上面NPN三極管導通,輸出電平VS+;當比較器輸出低電平時則恰恰相反,PNP三極管導通,輸出和地相連,為低電平。右邊的則可以理解為開漏輸出形式,需要接上拉。
浮空輸入:對于浮空輸入,一直沒找到很權威的解釋,只好從以下圖中去理解了
由于浮空輸入一般多用于外部按鍵輸入,結合圖上的輸入部分電路,我理解為浮空輸入狀態(tài)下,IO的電平狀態(tài)是不確定的,完全由外部輸入決定,如果在該引腳懸空的情況下,讀取該端口的電平是不確定的。
上拉輸入/下拉輸入/模擬輸入:這幾個概念很好理解,從字面便能輕易讀懂。
復用開漏輸出、復用推挽輸出:可以理解為GPIO口被用作第二功能時的配置情況(即并非作為通用IO口使用)
最后總結下使用情況:
在STM32中選用IO模式
(1) 浮空輸入_IN_FLOATING ——浮空輸入,可以做KEY識別,RX1
(2)帶上拉輸入_IPU——IO內部上拉電阻輸入
(3)帶下拉輸入_IPD—— IO內部下拉電阻輸入
(4) 模擬輸入_AIN ——應用ADC模擬輸入,或者低功耗下省電
(5)開漏輸出_OUT_OD ——IO輸出0接GND,IO輸出1,懸空,需要外接上拉電阻,才能實現輸出高電平。當輸出為1時,IO口的狀態(tài)由上拉電阻拉高電平,但由于是開漏輸出模式,這樣IO口也就可以由外部電路改變?yōu)榈碗娖交虿蛔儭?梢宰xIO輸入電平變化,實現C51的IO雙向功能
(6)推挽輸出_OUT_PP ——IO輸出0-接GND, IO輸出1 -接VCC,讀輸入值是未知的
(7)復用功能的推挽輸出_AF_PP ——片內外設功能(I2C的SCL,SDA)
(8)復用功能的開漏輸出_AF_OD——片內外設功能(TX1,MOSI,MISO.SCK.SS)
STM32設置實例:
(1)模擬I2C使用開漏輸出_OUT_OD,接上拉電阻,能夠正確輸出0和1;讀值時先GPIO_SetBits(GPIOB, GPIO_Pin_0);拉高,然后可以讀IO的值;使用GPIO_ReadInputDataBit(GPIOB,GPIO_Pin_0);
(2)如果是無上拉電阻,IO默認是高電平;需要讀取IO的值,可以使用帶上拉輸入_IPU和浮空輸入_IN_FLOATING和開漏輸出_OUT_OD;
通常有5種方式使用某個引腳功能,它們的配置方式如下:
1)作為普通GPIO輸入:根據需要配置該引腳為浮空輸入、帶弱上拉輸入或帶弱下拉輸入,同時不要使能該引腳對應的所有復用功能模塊。
2)作為普通GPIO輸出:根據需要配置該引腳為推挽輸出或開漏輸出,同時不要使能該引腳對應的所有復用功能模塊。
3)作為普通模擬輸入:配置該引腳為模擬輸入模式,同時不要使能該引腳對應的所有復用功能模塊。
4)作為內置外設的輸入:根據需要配置該引腳為浮空輸入、帶弱上拉輸入或帶弱下拉輸入,同時使能該引腳對應的某個復用功能模塊。
5)作為內置外設的輸出:根據需要配置該引腳為復用推挽輸出或復用開漏輸出,同時使能該引腳對應的所有復用功能模塊。
注意如果有多個復用功能模塊對應同一個引腳,只能使能其中之一,其它模塊保持非使能狀態(tài)。
比如要使用STM32F103VBT6的47、48腳的USART3功能,則需要配置47腳為復用推挽輸出或復用開漏輸出,配置48腳為某種輸入模式,同時使能USART3并保持I2C2的非使能狀態(tài)。
如果要使用STM32F103VBT6的47腳作為TIM2_CH3,則需要對TIM2進行重映射,然后再按復用功能的方式配置對應引腳。
上一篇:STM32F1x系列——GPIO操作
下一篇:STM32(二)之GPIO操作(2)——通過按鍵控制LED燈的開關
推薦閱讀
史海拾趣
設計資源 培訓 開發(fā)板 精華推薦
- 威世推出適用于下一代電動汽車冷卻系統的緊湊型熱敏電阻
- 通過vmRT-Thread和vSOME/IP支持車載SOA開發(fā)
- “唯算力論”是誤區(qū)!堆滿硬件也不一定靠譜!如何才能邁入自動駕駛?
- 賦能工業(yè)視覺:Teledyne Bumblebee X 5GigE 立體視覺相機
- 這款“逆天”電池充滿電僅需18秒!背后藏著什么黑科技?
- 動力電池的2025中場戰(zhàn)事
- 高算力支持下,端側AI模型能給座艙帶來哪些變化?
- Allotrope Energy開發(fā)超級電容器 使混合動力應用的性能提高一倍
- 福特汽車申請新專利 或將配備可移動桌子的控制臺
- 長城汽車攜手南京藝術學院及超高清聯盟,共推車載音視頻技術革新